Search results for "Sparse inference"
showing 2 items of 2 documents
Extending graphical models for applications: on covariates, missingness and normality
2021
The authors of the paper “Bayesian Graphical Models for Modern Biological Applications” have put forward an important framework for making graphical models more useful in applied settings. In this discussion paper, we give a number of suggestions for making this framework even more suitable for practical scenarios. Firstly, we show that an alternative and simplified definition of covariate might make the framework more manageable in high-dimensional settings. Secondly, we point out that the inclusion of missing variables is important for practical data analysis. Finally, we comment on the effect that the Gaussianity assumption has in identifying the underlying conditional independence graph…
DgCox: a differential geometric approach for high-dimensional Cox proportional hazard models
2014
Many clinical and epidemiological studies rely on survival modelling to detect clinically relevant factors that affect various event histories. With the introduction of high-throughput technologies in the clinical and even large-scale epidemiological studies, the need for inference tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. This paper will introduce a principled sparse inference methodology for proportional hazards modelling, based on differential geometrical analyses of the high-dimensional likelihood surface.